Blogger templates

Senin, 28 Juni 2010

Target STBM


Target STBM Sesuai Renstra Depkes RI
Sebagai bahan sharing pertanyaan mbak Feli, SKM - berikut disampaikan target STBM sesuai Renstra Depkes. Sebetulnya niatnya bahan ini dituliskan di "Ruang Berbagi", namun karena terlalu panjang, dan belum sempat setting di admin shoubox, maka sharing ini dituliskan di posting ini. Mohon maaf sharing terlambat di posting (maklum sudah agak lama gak berkunjung ke blog ini  .... ). Jika ada temen yang punya informasi target STBM lebih detail bisa di posting di blog ini.

Oh ya  .. terkait dengan hal tersebut, jika ada temen akan berbagi, baik dalam bentuk tulisan maupun informasi lainnya, dapat kirimkan emailnya ke kita, nanti kita masukkan dalam user blog ini, dan bisa melakukan posting dan menulis berbagi artikel disini. 

Target STBM sesuai Renstra Kemenkes, sebagai berikut :








FOKUS /KEGIATAN PRIORITAS
INDIKATOR
TARGET
2010
2014
Penyehatan air bersih dan sanitasi
1.     Persentase penduduk yg   memiliki akses  terhadap air  minum yang berkualitas
2.      Persentase kualitas air  minum yang memenuhi  syarat
3.     Persentase penduduk yang menggunakan jamban sehat
4.        Persentase penduduk Stop Buang Air Besar Sembarangan (BABS)
5.        Persentase propinsi yang      memfasilitasi penyelenggaraan  STBM Sanitasi Total berbasis Masyarakat) sebesar 100%  Kab/Kota
62


85


64

71

18
67


100


75

100

100
Pemeliharaan dan Pengawasan Kualitas   Lingkungan
1.        Persentase cakupan tempat- tempat umum yang memenuhi syarat Kesehatan
2.        Persentase cakupan rumah yang memenuhi syarat Kesehatan
3.        Persentase cakupan tempat pengelolaan makanan yang  Memenuhi syarat Kesehatan
76


75


55
85


85


75
Pengendalian dampak  resiko pencemaran  lingkungan
Cakupan daerah potensial yang  melaksanakan strategi  adaptasi dampak Kesehatan akibat perubahan iklim
20


100
Pengembangan wilayah sehat
1.        Persentase Kab/kota/ Kawasan yang telah  melaksanakan     Kab/Kota/Kawasan sehat
2.        Persentase provinsi yang       memfasilitasi penyelenggaraan kab/kota       sehat yang sesuai standar        sebesar 50%
50


12
100


100
 

Sumber : Renstra  Kementerian  Kesehatan (Bidang Penyehatan Lingkungan) 2010 2014
Disampaikan oleh Direktur Penyehatan Lingkungan Direktorat Jenderal Pengendalian Penyakit dan Penyehatan Lingkungan (Makassar, Kamis  20 Mei 2010)


Target diatas dalam pelaksanaannya dapat di break down per tahun, sehingga aplikatif sesuai kondisi tiap Kabupaten dan Kota.

Sabtu, 26 Juni 2010

Pengukuran Kebisingan

Cara Pengukuran Tingkat Kebisingan

Suara atau bunyi memiliki intensitas yang berbeda, contohnya jika kita berteriak suara kita lebih kuat daripada berbisik, sehingga teriakan itu memiliki energi lebih besar untuk mencapai jarak yang lebih jauh. Unit untuk mengukur intensitas bunyi adalah desibel (dB). Skala desibel merupakan skala yang bersifat logaritmik. Penambahan tingkat desibel berarti kenaikan tingkat kebisingan yang cukup besar. Contoh, jika bunyi bertambah 3 dB, volume suara sebenarnya meningkat 2 kali lipat.sound-level-meter

Kebisingan bisa menggangu karena frekuensi dan volumenya. Sebagai contoh, suara berfrekuensi tinggi lebih menggangu dari suara berfrekuensi rendah. Untuk menentukan tingkat bahaya dari kebisingan, maka perlu dilakukan monitoring dengan bantuan alat:

  • Noise Level Meter dan Noise Analyzer (untuk mengidentifikasi paparan)
  • Peralatan audiometric, untuk mengetes secara periodik selama paparan dan untuk menganalisis dampak paparan pada pekerja.

Ada beberapa macam peralatan pengukuran kebisingan, antara lain sound survey meter, sound level meter, octave band analyzer, narrow band analyzer, dan lain-lain. Untuk permasalahan bising kebanyakan sound level meter dan octave band analyzer sudah cukup banyak memberikan informasi.

Sound Level Meter (SLM)

Adalah instrumen dasar yang digunakan dalam pengukuran kebisingan. SLM terdiri atas mikropon dan sebuah sirkuit elektronik termasuk attenuator, 3 jaringan perespon frekuensi, skala indikator dan amplifier. Tiga jaringan tersebut distandarisasi sesuai standar SLM. Tujuannya adalah untuk memberikan pendekatan yang terbaik dalam pengukuran tingkat kebisingan total. Respon manusia terhadap suara bermacam-macam sesuai dengan frekuensi dan intensitasnya. Telinga kurang sensitif terhadap frekuensi lemah maupun tinggi pada intensitas yang rendah. Pada tingkat kebisingan yang tinggi, ada perbedaan respon manusia terhadap berbagai frekuensi. Tiga pembobotan tersebut berfungsi untuk mengkompensasi perbedaan respon manusia.

Octave Band Analyzer (OBA)

Saat bunyi yang diukur bersifat komplek, terdiri atas tone yang berbeda-beda, oktaf yang berbeda-beda, maka nilai yang dihasilkan di SLM tetap berupa nilai tunggal. Hal ini tentu saja tidak representatif. Untuk kondisi pengukuran yang rumit berdasarkan frekuensi, maka alat yang digunakan adalah OBA. Pengukuran dapat dilakukan dalam satu oktaf dengan satu OBA. Untuk pengukuran lebih dari satu oktaf, dapat digunakan OBA dengan tipe lain. Oktaf standar yang ada adalah 37,5 75, 75-150, 300-600,600-1200, 1200-2400, 2400-4800, dan 4800-9600 Hz.

Standar Kebisingan

Setelah pengukuran kebisingan dilakukan, maka perlu dianalisis apakah kebisingan tersebut dapat diterima oleh telinga. Berikut ini standar atau kriteria kebisingan yang ditetapkan oleh berbagai pihak.

  1. Keputusan Menteri Negara Tenaga Kerja No.KEP-51/MEN/1999 tentang nilai ambang batas kebisingan. lihat Tabel 2.3 untuk lebih jelas.
  2. Surat Edaran Menteri Tenaga Kerja, Transmigrasi, dan Koperasi No.SE 01/MEN/1978

Nilai Ambang Batas yang disingkat NAB untuk kebisingan di tempat kerja adalah intensitas tertinggi dan merupakan nilai rata-rata yang masih dapat diterima tenaga kerja tanpa mengakibatkan hilangnya daya dengar yang tetap untuk waktu kerja yang terus menerus tidak lebih dari 8 jam sehari dan 40 jam seminggu

NAB untuk kebisingan di tempat kerja ditetapkan 85 dB (A)

 Nilai Ambang Kebisingan Menurut Kep Menaker No. KEP-51/MEN/1999

Waktu Pemaparan

Intensitas (dB A)

8

4

2

1

Jam

85

88

91

94

30

15

7,5

3,75

1,88

0,94

Manit

97

100

103

106

109

112

28,12

14,06

7,03

3,52

1,75

0,88

0,44

0,22

0,11

Detik

115

118

121

124

127

13

133

136

139

 

3. Kriteria Kebisingan Menurut Department of Labor OSHA

Waktu (jam/hari)

Tingkat Kebisingan (dB A)

8

6

4

3

2

1,5

1

0,5

<0,25

90

92

95

97

100

102

105

110

115

 

4. Standard Kebisingan Sesuai Peraturan Menteri Kesehatan Republik Indonesia No.718/Men/Kes/Per/XI/1987, tentang kebisingan yang berhubungan dengan Kesehatan

Pembagian Zona Bising Oleh Menteri Kesehatan

No

Zona

Maksimum dianjurkan (dBA)

Maksimum diperbolehkan (dBA)

1 A 35 45
2 B 45 55
3 C 50 60
4 D 60 70

Keterangan:

Zona A = tempat penelitian, rumah sakit, tempat perawatan Kesehatan dsb;

Zona B = perumahan, tempat pendidikan, rekreasi, dan sejenisnya;

Zona C = perkantoran, pertokoan, perdagangan, pasar, dan sejenisnya;

Zona D = industri, pabrik, stasiun kereta api, terminal bis, dan sejenisnya.

5. Kriteria Kebisingan menurut Formula ACGIH dan NIOSH. Formula ini, dengan menggunakan rumus tertentu, dipakai untuk menghitung waktu maksimum yang diperkenankan bagi seorang pekerja untuk berada dalam tempat kerja dengan tingkat kebisingan tidak aman.

Kriteria Kebisingan Menurut ACGIH dan NIOSH

DB

Waktu Paparan yang diperbolehkan (jam)

DB

Waktu Paparan yang diperbolehkan(jam)

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

25,4

20,16

16

12,7

10,08

8

6,35

5,04

4

3,17

2,52

2

1,59

1,26

1

0,79

0,63

0,5

0,4

0,31

0,25

0,2

0,16

0,13

0,1

0,08

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

37,5

2,98

2,36

1,88

1,49

1,18

0,94

0,74

0,59

0,47

0,37

0,3

0,23

0,19

0,15

0,12

0,09

0,07

0,06

0,05

0,04

0,03

0,02

0,02

0,01

Jumat, 25 Juni 2010

Pengendalian Kebisingan

Cara Pengendalian Kebisingan

Pengendalian kebisingan mutlak diperlukan untuk memperkecil pengaruhnya pada Kesehatan kita. Usaha pengendalian kebisingan harus dimulai dengan melihat komponen kebisingan, yaitu Sumber radiasi, Jalur tempuh radiasi, serta Penerima (telinga). Antisipasi kebisingan dapat dilakukan dengan intervensi terhadap ketiga komponen ini.Industrial Noise Control

Secara garis besar, ada dua jenis pengendalian kebisingan, yaitu pengendalian bising aktif (active noise control) dan pengendalian bising pasif (passive noise control).

Pada Active Noise Control dapat dilakukan dengan Kontrol pada Sumber. Pengontrolan kebisingan pada sumber dapat dilakukan dengan modifikasi sumber, yaitu penggantian komponen atau mendisain ulang alat atau mesin supaya kebisingan yang ditimbulkan bisa dikurangi. Program maintenance yang baik supaya mesin tetap terpelihara, dan penggantian proses. Misalnya mengurangi faktor gesekan dan kebocoran suara, memperkecil dan mengisolasi elemen getar, melengkapi peredam pada mesin, serta pemeliharaan rutin terhadap mesin. Tetapi cara ini memerlukan penelitian intensif dan umumnya juga butuh biaya yang sangat tinggi (Goembira, Fadjar, Vera S Bachtiar, 2003). Beberapa upaya untuk mengurangi kebisingan di sumber antara lain (Tambunan, 2005):

  • Mengganti mesin-mesin lama dengan mesin baru dengan  tingkat kebisingan yang lebih rendah
  • Mengganti jenis proses mesin (dengan tingkat kebisingan yang lebih rendah) dengan fungsi proses yang sama, contohnya pengelasan digunakan sbg penggantian proses riveting.
  • Modifikasi tempat mesin, seperti pemberian dudukan mesin dengan material-material yang memiliki koefisien redaman getaran lebih tinggi.
  • Pemasangan peredam akustik (acoustic barrier) dalam ruang kerja

Antisipasi kebisingan dengan kontrol sumber ternyata 10 kali lebih murah (unit harga terhadap reduksi dB) daripada antisipasi pada propagasi atau kontrol lingkungan. noise controll

Jika kita berada pada lingkungan kerja dengan kebisingan > 100 dB A, maka usaha kontrol pada sumber kebisingan harus dilakukan. Menurut Standard Basic Requirement OSHA, rekayasa mesin harus dilakukan pada kondisi ini, dengan beberapa teknik berikut :

  • Cladding, adalah teknik untuk mengurangi pancaran bising dari pipa akibat aliran fluida di dalamnya. Cladding terdiri atas lapisan penyerap suara dan bahan impermeable. Lapisan ini ada berbagai jenis dengan tingkat atenuasi yang bervariasi.
  • Silencer, Attenuator, Muffler. digunakan untuk mereduksi bising fluida dengan meletakkannya di daerah atau jalur aliran fluida.

Secara praktis di lapangan, pengendalian bising pada sumber dapat dilakukan dengan beberapa cara, antara lain dengan cara pemeliharaan mesin-mesin secara kontinu, penempatan mesin-mesin pada ruangan khusus dan jauh dari kegiatan masyarakat atau karyawan, serta melengkapi mesin-mesin dengan penutup mesin sehingga dapat mengurangi kebisingan.

Metode lain untuk meredam bising seperti penggunaan alat peredam bising silencer yang diletakkan pada vent gas. Silencer dapat digunakan untuk mengurangi kebisingan dengan frekuensi tinggi, kompresor, blower, dan pompa vakum. Alat ini didisain sedemikian rupa sehingga aliran udara melewati tabung akustik berlubang yang dikelilingi oleh lapisan tebal dari material penyerap suara yang akan menurunkan kebisingan dengan range frekuensi tinggi dengan penurunan tekanan minimum.

Silencer terbuat dari konstruksi baja dimana permukaan luar dilapisi dengan baik. Alat ini didisain untuk menangani udara kering dengan temperatur di bawah 93oC. Untuk temperatur tinggi digunakan kemasan fiberglass.

clip_image008

Selain pengendalian dengan melakukan kontrol pada sumber bising, pengendalian kebisingan juga dapat dilakukan dengan pengendalian pada medium perambatan. Usaha ini bertujuan untuk menghalangi perambatan suara dari sumber suara yang menuju ke telinga manusia. Untuk menghalangi perambatan, ditempatkanlah sound barrier antara sumber suara dan telingan. Pemblokiran rambatan ini hanya akan berhasil jika sound barrier tidak ikut bergetar (resonansi) saat tertimpa gelombang yang merambat, hal ini sangat tergantung pada bahan dimensi.

Pengendalian kebisingan pada medium propagasi (medium rambat) sangat dipengaruhi oleh beberapa hal antra lain usaha untuk melakukan pemisahan ruangan dengan sekat atau pembatas akustik; Penggunaan material yang memiliki daya serap suara; Pembuatan Barrier yang berfungsi untuk menghalangi paparan bising dari sumber ke penerima dan dibangun di jalur propagasi antara sumber dan penerima. Usaha lain dapat dilakukan misal dengan memasang panel dan penghalang, serta memperluas jarak antar sumber dan melakukan pemagaran.

Salah satu usaha untuk mereduksi kebisingan pada daerah permukiman, dilakukan dengan Green Barrier yang membatasi daerah sumber kebisingan dengan daerah pemukiman masyarakat. Juga dapat dilakukan dengan memasang dinding pemisah antara sumber-sumber bising dengan ruangan tempat kerja (kedap suara).

Usaha terakhir untuk mengendalikan kebisingan dengan melakukan usaha proteksi secara personal. Proteksi personal yang bisa diterapkan adalah penggunaan earplugs dan earmuffs. Pemilihan antara kedua proteksi ini disesuaikan dengan kondisi. Secara umum, penggunaan earmuffs bisa mengurangi desibel yang masuk ke telinga lebih besar dari earplugs. Namun juga harus diingat bahwa proteksi yang berlebihan sangat dimungkinkan dapat mengurangi efektifitas proses.

Berikut beberapa penjelasan yang terkait dengan Earmuffs dan Earplugs.

Earmuffs, terbuat dari karet dan plastik. Earmuffs bisa digunakan untuk intensitas tinggi (>95 dB), bisa melindungi seluruh telinga, ukurannya bisa disesuaikan untuk berbagai ukran telinga, mudah diawasi dan walaupun terjadi infeksi pada telinga alat tetap dapat dipakai. Kekurangannya, penggunaan earmuffs menimbulkan ketidaknyamanan, rasa panas dan pusing, harga relatif lebih mahal, sukar dipasang pada kacamata dan helm, membatasi gerakan kepala dan kurang praktis karena ukurannya besar. Earmuffs lebih protektif daripada earplugs jika digunakan dengan tepat, tapi kurang efektif jika penggunaannya kurang pas dan pekerja menggunakan kaca mata.

Earplugs, digunakan untuk tingkat kebisingan sedang (80-95 dB), dengan waktu paparan 8 jam. Terdapat berbagai macam earplugs, baik bentuk padat maupun berongga. Bahannya terbuat dari karet lunak, karet keras, lilin, plastik atau kombinasi dari bahan-bahan tersebut.

Penguunaan ear plug mempunyai beberapa keuntungan, selain mudah dibawa karena bentuknya yang kecil, tidak membatasi gerakan kepala, lebih nyaman digunakan pada tempat panas, juga lebih murah (dibandingkan ear muff), Ear Plug juga lebih mudah dipakai bersama dengan kacamata dan helm. Sedangkan kekurangan ear plug atenuasi lebih kecil, sukar mengontrol atau diawasi, resiko infeksi pada saluran telinga.

Pengendalian pada penerima kebisingan dapat dilakukan dengan pembinaan Keselamatan dan Kesehatan Kerja (K3), serta melengkapi karyawan dengan alat pelindung diri (ear muff dan ear plug).

Rabu, 23 Juni 2010

Deklarasi ODF Kecamatan Kedungjajang

Open Defecation Free Declaration Kecamatan Kedungjajang Kabupaten Lumajang

Satu lagi Deklarasi Open Defecation Free (ODF) di Kabupaten Lumajang. Masyarakat Kecamatan Kedungjajang melaksanakan Deklarasi ODF pada hari Rabu Tanggal 23 Juni 2010, di Pendopo Kecamatan. Dengan Deklarasi ini di Kabupaten Lumajang, sampai saat ini, terdapat komunitas ODF sebanyak 4 Kecamatan dengan 48 Desa serta lebih dari 200 Posyandu.  

Sebagai catatan, secara geografis dan kultural, mungkin Deklarasi di Kecamatan Kedungjajang menjadi istimewa. Pertama wilayah ODF bergeser ke sebelah Utara Kabupaten, dan kedua, disana merupakan basis suku dan kultural yang lain dari wilayah ODF yang selama ini sudah ada (Kecamatan Gucialit, Senduro dan Padang). Kalau boleh berhipotesa, hal ini membawa (sedikit) angin segar bagi (sedikit) pandangan yang selama ini beranggapan bahwa yang berbau tapal kuda masih memerlukan lebih banyak effort untuk berhasil.

spanduk ODF KedungjajangAda sedikit joke dari Wakil Bupati Lumajang terkait kultur ini (saat memberikan sambutan pada Deklarasi ini). Prinsipnya menyampaikan sesuatu pada mereka harus tuntas dan jelas. Ketika menjumpai ada masyarakat yang masih buang air besar di sungai, Pak Wabub kita menegurnya dengan mengingatkan, bahwa buang air besar di sungai tidak baik dan tidak boleh dari kaca mata apapun. Yang di tegur bilang, bahwa punyanya tidak besar namun panjang. So mesti jelas dong, dilarang buang air besar dan panjang .. di sungai  
100_6559100_6548Sesuai teori replikasi, lebih banyak harapan menjadi sah untuk dibebankan pasca deklarasi ODF Kecamatan Kedungjajang ini. Setidaknya - sesuai harapan Bupati Lumajang - pada pengantar penandatangan Prasasti Deklarasi ini, Kecamatan di wilayah Utara (dengan basis kultur yang sama), akan segera mengikuti jejak Kecamatan Kedungjajang (Kecamatan Randuagung, Klakah, dan Ranuyoso).
Namun sesuai target dan komitmen, 6 Kecamatan lain masih terus bergerak untuk menyandang Status ODF sampai akhir tahun 2010 ini (Tempursari, Pronojiwo, Pasrujambe, Yosowilangun, Tekung, Jatiroto).

Komitmen besar dan gaung kampanye ODF di tingkat stake holder, memang sangat layak untuk dijadikan landasan membangun optimisme. Kita dapat melihat bagaimana para camat dan Kepala Desa sudah sangat nyambung dengan komitmen Bupati di seantero wilayah. 100_6563 Dan dari sini (sebetulnya) kita dapat melihat berbagai inovasi tiada henti (meminjam iklan produk otomotif), dari mereka untuk mewujudkan ODF di wilayahnya. Yang menjadi sedikit kelabakan mungkin para verifikator ODF (dan tentu para verifikator pasca deklarasi ODF). Untung kita mendapat supply sukup, dengan kehadiran para CPNS baru dengan basic fungsional Sanitarian dan Penyuluh Kesehatan. Mereka masih muda, energik, idealis, dan profesional (tinggal sedikit injeksi roh STBM dan Jiwa CLTS ). 

Kembali ke Kecamatan Kedungjajang. Kilas balik cerita dimulai pada tahun 2005 ketika pilot project CLTS di terapkan di Desa Jatisari, dan berhasil. Metode ini kemudian dikembangkan di 3 desa lainnya - Desa Grobogan, Kedungjajang, dan Curah Petung - dan berhasil, sampai kemudian ternyata metode ini kurang berhasil dilaksanakan di Desa Pandansari. 100_6593 Belajar dari situ, kemudian dilakukan penguatan pada Tim dan kerjasama lintas sektor. Sebut saja diantaranya dengan kehadiran Tim SToPS, sinkronisasi dengan Posyandu Gerbangmas, sampai kemudian lahir Tim STBM dengan penguatan aspek legalitasnya (SK Camat dan Kepala Desa). Motto Tim Mereka ternyata simple namun keren : YANG BIASA BELUM TENTU BENAR YANG BENAR HARUS DIBIASAKAN. 

Dari motto tersebut lahirlah hasil berikut : 100_6586Pada tahun 2005 angka kepemilikan jamban di Kecamatan Kedungjajang tercatat 5.550 buah, Jumlah ini terus bertambah sehingga sampai tri bulan I tahun 2010 ini angka kepemilikan jamban meningkat menjadi 8.694 buah.  Terjadi penambahan jumlah jamban sebanyak 3.144 buah. Dengan akses penggunaan menjadi 100%, maka dengan gembira di umumkanlah Deklarasi 100% masyarakat Kecamatan Kedungjajang Telah Bebas Dari Buang Air Besar Sembarangan pada Tanggal 23 Juni 2010.

Untuk lebih melengkapi informasi ini, berikut sebagian prosesi Deklarasi Open Defecation Free Kec. Kedungjajang dalam format video :


See u next ODF .

Selasa, 01 Juni 2010

Standard Operational Procedure Sanitarian

SOP Mengukur Sampel Kebisingan, Kepadatan Lalat, Kualitas Fisik Limbah Cair, dan Pemeriksaan Sampel Sampah dan Tanah

Beberapa teman Sanitarian tidak lulus uji kompetensi. Beberapa dari mereka memenyinggung transparansi nilai. Apakah memang kualifikasi nilai yang didapat dibawah standard kompetensi atau ada faktor (?) lain. Sementara banyak teman mereka lulus-lulus saja. Jangan-jangan kita memang sudah terlalu tua untuk mengingat teori-teori, sementara keseharian kerja kita disibukkan dengan sistem dan pola yang aplikatif, dan celakanya itu jauh dari aplikasi teori yang kita dapatkan saat sekolah dulu. Sebagai awam, kalau boleh bertanya, kenapa sih mesti ada uji kompetensi? Bukankah status berkompeten sudah kita dapatkan bersamaan dengan wisuda dari sekolah yang sangat berkompeten menyelenggarakan pendidikan kita dulu? Namun orang bilang, pada era ISO dan era Sertifikasi sekarang, para kuli bangunan-pun harus punya sertifikat uji kompetensi. Ah, jangan-jangan (lagi), kita memang selalu suka menggunakan jargon Kalau bisa dipersulit, mengapa harus dipermudah ? Semoga itu sekedar Suudhon orang yang kalah perang pada wadah baru uji kompetensi ini.
Perdebatan diatas harus saya akhiri. Tulisan ini mungkin sekedar mengingatkan kita pada beberapa teori terkait SOP pengambilan sampel lingkungan. Tulisan-tulisan berikutnya Insya Allah akan lebih banyak lagi.

Mengukur Kebisingan
Cara menentukan titik lokasi untuk pengambilan sampel kebisingan sebagai berikut : Soun Level Meter
  • Ditentukan pada jarak terjauh dari sumber bising
  • Jarak terdekat dari sumber kebisingan
  • Jarak antara jarak terjauh dan terdekat dengan sumber bising.
Sedangkan peralatan yang digunakan adalah Sound Level Meter dan Form Pencatatan. Hasil pengukuran kemudian dilakukan analisa dengan membandingkan hasil pengukuran dengan standard.

Mengukur Kepadatan Lalat
Alat yang digunakan untuk mengukur tingkat kepadatan lalat antara lain fly grill, formulir, counter dan stop watch.
Prosedur pengukuran kepadatan lalat :
  1. Fly grill diletakkan mendatar pada titik lokasi pengukuran
  2. Setiap titik lokasi dilakukan 10x pengukuran
  3. Selama 30 detik lalat yang hinggap di fly grill dihitung
The InfoVisual.info site uses images to explain objects. Setelah prosedur diatas dilakukan, kepadatan lalat dicatat dalam lembar isian. Formulir ini diisi tiap kali pengukuran dengan lama waktu 30 detik.Penentuan tingkat kepadatan lalat dihitung dengan cara diambil 5 dari 10 pengukuran yang paling banyak, selanjutnya hasil di rata-rata. Hasil ini dibandingkan dengan standard berikut :
Index Kepadatan lalat :
  • Jarang : = 2
  • Sedang : >2-20
  • Tinggi : > 20

Pengukuran Kualitas Fisik Limbah Cair
Peralatan yang digunakan untuk mengukur kualitas fisik limbah cair sebagai berikut :
  1. Termometer digunakan untuk mengukur suhu
  2. DHL Meter digunakan untuk mengukur kadar DHL
  3. Dry Oven digunakan untuk pemanasan sampel
  4. Desikator digunakan untuk menyerap kadar air
  5. Timbangan analitik digunakan untuk menimbang
  6. Cawan Porselen digunakan sebagai wadah kertas saring saat di oven
  7. Beker Glass wadah sampel saat akan diukur
Sedangkan bahan yang digunakan :
  1. Aquades sebagai pelarut dan pengencer
  2. Kertas saring untuk menyaring suspended solid
  3. Tissue untuk membersihkan atau mengeringkan alat
Selain alat dan bahan diatas juga diperlukan peralatan penunjang seperti pena/pensil, kertas kerja, penghapus, serta kalkulator.

Sebagai catatn, identifikasi limbah cair berfungsi sebagai informasi tentang identitas sampel agar tidak tertukar dengan sampel lain, juga untuk kepentingan analisis hasil pemeriksaan. Sedangkan komponen identitas sampel minimal terdiri dari beberapa informasi :
  1. Nama/alamat pengirim
  2. Tempat pengambilan sampel
  3. Tanggal pengambilan
  4. Waktu pengambilan
  5. Tujuan pemeriksaan
Jenis parameter kualitas fisik limbah cair yang harus diukur adalah suhu, Daya Hantar Listrik (DHL), serta Total Suspended Solid (TSS).

Pemeriksaan Sampel Tanah Dan Sampah
Sebelum melakukan uji/pemeriksaan sampel tanah dan sampah, penting dipersiapkan Alat Pelindung Diri (APD) seperti masker, sepatu boot, sarung tangan, dan helm kerja. Sedangkan alat yang digunakan dalam pengambilan sampel tanah dan sampah untuk kepentingan pemeriksaan kualitas fisik adalah :
  1. Bor tangan
  2. Sekop kecil dari bahan metal, plastik, dan kayu
  3. pH soil tester
  4. Termometer
  5. Higro meter
  6. Wadah sampel
  7. Alat tulis
  8. Checklist pengambilan sampel
  9. Rol meter
Komponen / unsur fisik yang harus dicatat dakam pengambilan sampel tanah adalah :
  1. Jenis sampel
  2. Spesifikasi pemeriksaan (fisik/kimia/mikrobiologi)
  3. Lokasi sampling
  4. Teknik sampling yang dilakukan
to be continued  ..

Rabu, 26 Mei 2010

Software Klinik Sanitasi

Software Klinik Sanitasi Berbasis Surveilans


Software ini dibuat oleh Tim MIT Sanitasi Dinkes Kab. Lumajang dengan basis aplikasi menggunakan bahasa program Delphi. Spesifikasi komputer yang diperlukan termasuk minimal, yaitu Pentium III ke atas, OS windows xp,vista,windows 7, RAM minimum, VGA minimum, serta LAN yang bersifat optional.


Gambaran singkat software klinik sanitasi berbasis surveilans ini dapat anda lihat pada video berikut :



Latar belakang dibuatnya program aplikasi klinik sanitasi ini dimulai ketika tahun 2008 dilakukan survey sanitasi dasar (lebih tepatnya sensus, karena dilakukan secara total sampling). Dengan lebih 250 ribu rumah sasaran penilaian, kegiatan ini menghasilkan data base sanitasi dasar yang sangat menggiurkan, sehingga sangat eman jika tidak dimaksimalkan.

Survey sanitasi dasar dengan sasaran rumah ini menggunakan acuan Pedoman Teknis Penilaian Rumah Sehat Depkes RI Tahun 2007. Sehingga survey ini pada dasarnya selain bertujuan untuk memperoleh data dasar rumah sehat yang valid, juga diperolehnya gambaran prosentase rumah sehat, gambaran status sanitasi rumah (yang meliputi aspek komponen rumah, aspek sarana sanitasi, serta aspek perilaku), serta diketahuinya gambaran potensi resiko penyakit berbasis lingkungan dalam kaitan dengan kondisi rumah.
Tujuan diatas menjadi penting, karena sebagian besar penyakit berbasis lingkungan masuk dalam 10 besar penyakit, sehingga dengan aplikasi ini diharapkan dapat mengembangkan kemampuan petugas dalam identifikasi, analisa dan upaya pemecahan masalah Kesehatan lingkungan dan penyakit berbasis lingkungan
Dengan output pada software klinik sanitasi ini akan diketahui kondisi sanitasi serta perilaku sanitasi pada sasaran serta dapat dilakukan analisa berdasarkan data cakupan analisa pada masing-masing kondisi. Kondisi yang dimaksud adalah kriteria dan indikator sesuai data base Survey Sanitasi Dasar dan checklist inspeksi sanitasi.

Data base survey sanitasi dasar meliputi berbagai item data sanitasi dasar rumah antara lain :
Indikator komponen rumah yang di survey meliputi :
1. Langit-langit
2. Dinding
3. Lantai
4. Jendela kamar tidur
5. Jendela ruang keluarga
6. Ventilasi
7. Lubang asap dapur
8. Pencahayaan
9. Kandang
10. Pemanfaatan Pekarangan
11. Kepadatan penghuni.

Indikator sarana sanitasi meluputi :
1. Sarana air bersih
2. Jamban
3. Sarana pembuangan air limbah
4. Sarana pembuangan sampah.

Indikator perilaku penghuni :
1. Kebiasaan mencuci tangan
2. Keberadaan vektor tikus
3. Keberadaan Jentik.

Sedangkan data base lain menggunakan acuan hasil inspeksi sanitasi pada lebih dari 34 checklist sasaran.
Check List Inspeksi Sanitasi Rumah
Check List Inspeksi Sanitasi Tempat Pengelolaan Makanan (TPM)
1. Rumah Makan
2. Audit Hygiene Sanitasi MakananJasa Boga
3. Laporan Pemeriksaan Jasa Boga
4. Kantin Sekolah

Check List Inspeksi Sanitasi Sarana Air Bersih
1. Sumur Gali
2. Sumur Pompa Tangan
3. Perlindungan Mata Air
4. Penampungan Air Hujan
5. Kran Umum
6. Terminal Air

Check List Inspeksi Sanitasi Tempat-Tempat Umum (TTU)
1. Kolam Renang/Pemandian Umum
2. Depot Air Minum Isi Ulang
3. Pasar
4. Pusat Perbelanjaan
5. Salon
6. Pangkas Rambut
7. Masjid
8. Gereja
9. Hotel Melati

Check List Inspeksi Sanitasi Institusi
1. Kes lingkungan kerja Industri
2. Kes lingkungan kerja perkantoran
3. Sekolah


Berbagai macam checklist tersebut telah dibukukan lengkap dengan bobot dan nilai serta kriteria akhir. Dengan berbagai tool dan data base diatas maka intervensi dan tindak lanjut lapangan dapat dilakukan secara lebih tepat dan terarah.

Kamis, 20 Mei 2010

Pemeriksaan E Coli Dengan Metode H2S

PEMERIKSAAN KUALITAS BAKTERIOLOGIS AIR METODE H2S

Menjawab permintaan mas Putut dalam kolom shoutmix tentang artikel yang terkait laboratorium, berikut artikel tentang Pemeriksaan Kualitas Bakteriologis Air dengan menggunakan metode H2S. Tulisan ini mengacu pada Pedoman Pemeriksaan Kualitas Bakteriologis Air Untuk Daerah Perdesaan Departemen Kesehatan RI, Direktorat Jenderal Pemberantasan Penyakit Menular dan Penyehatan Lingkungan Pemukiman Tahun 1997.

Latar belakang pemeriksaan bakteriologis air dengan metode H2S antara lain bahwa keberadaan bakteri coliform didalam air diasosiasikan dengan organisme penghasil hidrogen sulfide/H2 S (Allen & Geldreich-1975). Berdasarkan kepastian adanya H2s dalam air tersebut sekaligus merupakan indikator adanya bakteri coliform (Manya dkk, 1982).

Terdapat cara sederhana yang dapat dilakukan untuk mengetahui kepastian tersebut (adanya coliform karena faktor H2S ini). Mengapa sederhana? Karena pengambilan dan pemeriksaan sampel dapat langsung dilakukan dengan tabung reaksi/botol yg telah berisi media yang sudah dipersiapkan. Botol dengan media ini selanjutnya dieramakan/inkubasi pada suhu ruangan (26oc 37oc) selama 1 3 hari (mulai dari 18 jam). Untuk menilai hasil pekerjaan ini digunakan indikator dengan adanya perubahan warna botol media yang menjadi hitam.

Pemeriksaan kualitas bakteriologis air dengan menggunakan metode H2S ini mempunyai beberapa keuntungan sekaligus kerugian. Beberapa keuntungan dapat kita sebutkan antara lain sederhana, mudah, cepat, murah, peralatan dan media mudah diperoleh, serta tidak memerlukan keahlian khusus, karena cukup dengan pelatihan sederhana petugas sudah mampu melakukan pemeriksaan.

clip_image002Selain beberapa keuntungan tersebut, juga terdapat kerugian, diantaranya metode ini bersifat kualitatif, sehingga tidak terukur percise dalam bentuk satuan (range atau angka). Berdasarkan uji coba, hasil yang didapat kurang sensitif dibanding dengan metode tabung ganda. Walaupun persentasenya kecil, masih terdapat satu sampel yang sama didapat, namun berbeda hasil dengan menggunakan ke-dua metode ini. Metode H2S ini mempunyai sensitivitas yang baik (>80%), jika digunakan pada uji sampel air dengan kadar bakteri tinggi, namun kurang sensitif jika frekuensi keberadaan bakteri dalam air rendah.

Peralatan dan media pemeriksaan bakteriologis kualitas air dengan metode H2S antra lain :
  • Kompor
  • Tabung reaksi dg tutup ulir / botol bertutup tahan panas
  • Sterilisator (autoclave, drying oven)
  • Lampu spiritus
  • Timbangan
  • Pipet (1 ml , 10 ml )
  • Gelas ukur, erlenmeyer
  • Rak tabung
  • Botol media
  • Lain-lain (Ph lakmus, spidol, label)
  • Sodium thiosulfate
  • Kertas saring
  • Pepton (bakteriological peptone)
  • Dipotasium hydrogen phospate
  • Ferric ammonium citrate
  • Teepol
  • Aquadest/aquabi dest

Prosedur pembuatan Media pemeriksaan
  1. Pepton : 40,0 GR ; K2HPO4 : 3,0 GR ; FAC : 1,5 GR ; NA2S2SO4 : 1,0 GR ; dan aquabidest 1.000 ml.
  2. Tambahkan Teepol 2,0 ml
  3. Dipanaskan sambil diaduk perlahan lahan sampai larutan homogen/merata, kemudian diamkan sampai dingin.
  4. Masukan kertas saring berlipat (8 x 8 cm) kedlm tabung/botol media, kemudian pipet larutan media 1 ml untuk sampel 20 ml, & 2,5 ml untuk sampel 100 ml.
  5. Tabung-tabung tersebut disteril pada suhu 121 oc selama 15 kemudian dikeringkan (oven 60 oc selama 30).
  6. Dinginkan, simpan media pada suhu 4 8 oc.
Prosedur pemeriksaan dan pembacaan hasil
  • Ambil 1 tabung media.
  • Masukan sampel air 20 cc atau sampai tanda batas kedalam tabung/botol media (lewat mulut tabung diatas nyala api ,agar tetap steril).
  • Simpan di rak tabung pada suhu ruangan selama 1 3 hari.
Jika tahapan diatas sudah dilakukan, maka pembacaan hasil untuk memastikan keberadaan bakteri coliform dalam air bersih pada sampel pemeriksaan dapat dilakukan dengan dua cara, kualitatif dan semi kualitatif.

Dengan cara kualitatif, hasil negatif jika tidak terjadi perubahan warna, hasil positif (+), jika terjadi perubahan warna pada media menjadi hitam / ke-hitaman. Sedangkan dengan cara Semi kualitatif, dpat dijelaskan sebagai berikut :

Botol 100 ml :
  • Warna hitam dalam waktu 1 3 hari berarti mengandung 1 bakteri/100 ml.
  • Warna hitam pekat dalamwaktu < 24 jam berarti mengandung > banyak bakteri/100 ml.
Tabung 20 ml :
  • Warna hitam dalam waktu 1 3 hari berarti mengandung > 5 bakteri/100 ml.
  • Warna hitam pekat dalam waktu < 24 jam berarti mengandung > 50 bakteri/100 ml.

Rabu, 19 Mei 2010

Deklarasi ODF Kec. Padang

Deklarasi Open Defecation Free (ODF) Kecamatan Padang Kab. Lumajang

Satu lagi Deklarasi penting dilakukan di Kabupaten Lumajang, Deklarasi Kecamatan Padang, sebagai Kecamatan ke tiga dengan 100% masyarakat telah bebas dari buang air besar sembarangan. Deklarasi ini dilakukan oleh masyarakat dengan penanda tanganan prasasti dilakukan oleh Bupati Lumajang (Dr. Sjahrazad Masdar, MA), pada Tanggal 18 Mei 2010, di Kantor Kecamatan Padang Kabupaten Lumajang.

Pada tingkat lokal Deklarasi ini menjadi cukup bermakna karena beberapa hal, antara lain :

Deklarasi ini merupakan first step dari banyak deklarasi serupa yang ditargetkan akan dilakukan di Kabupaten Lumajang. Sebagaimana komitmen Pemerintah Kabupaten Lumajang bahwa target Kabupaten Lumajang pada tahun 2013 seluruh wilayah Kabupaten sudah mnecapai status ODF. Sebagaimana kita ketahui bahwa target Nasional kondisi ini akan dicapai sampai tahun 2014 (100 % Stop BAB sembarangan).

100_5983Deklarasi yang dihadiri oleh (tidak lebih) dari 500 undangan, dari kalangan Legislatif, Kementerian Kesehatan, Birokrasi (Kepala Dinas/Kantor/Intansi Vertikal, Camat, Danramil, Kapolsek, se Kabupaten Lumajang, serta masyarakat Kecamatan padang. Secara implisit, tingkat kehadiran dengan beragam latar belakang ini dimaksudkan untuk menunjukkan bahwa Gerakan STBM telah menjadi sebuah totalitas gerakan di masyarakat. Sebagai catatan, bahwa peran Lintas Sektor khususnya Koramil sangat mewarnai Gerakan STBM di Kabupaten Lumajang, sehingga secara bermakna berperan dalam percepatan pencapaian target ODF.

Sebagai informasi perkembangan pelaksanaan STBM di Kabupaten Lumajang telah menunjukkan trend menjanjikan, sebagaimana data berikut :
100_5985
Kec gucialit : 9 Desa (Kecamatan ODF)
Kecamatan Senduro : 12 Desa (Kecamatan ODF)
Kecamatan Padang (odf) : 9 Desa (Kecamatan ODF)
Kecamatan Kedungjajang : 12 Desa (Rencana Deklarasi pada bulan juni
Kecamatan Pronojiwo : 2 Desa ODF
Kecamatan Pasirian : 2 Desa ODF
Kecamatan Yosowilangun : 4 Desa ODF
Sedangkan kecamatan lainnya telah menunjukkan trend ke arah jalan yang lurus dan telah mempunyai beberapa wilayah ODF ditingkat Posyandu, serta mempunyai target Kecamatan ODF serta perkembangan terakhir yang on schedulle :
  1. Kecamatan Pasrujambe, rencana Deklarasi ODF pada bulan Juni 2010, mulai bergerak serta telah terbentuk jejaring sanitasi.
  2. Kecamatan Yosowilangun, rencana Deklarasi ODF pada bulan Juli 2010, Muspika bergerak 2 kali seminggu turun ke desa.
  3. Kecamatan Tempursari, rencana Deklarasi ODF pada bulan Agustus 2010.
  4. DSCN0902Kecamatan Jatiroto, rencana Deklarasi ODF pada bulan Desember 2010, target ini dapat lebih cepat terealisasi mengingat totalitas dukungan Danramil dengan gerakan karya bhakti-nya.
  5. Kecamatan Pronojiwo, rencana Deklarasi ODF pada bulan September 2010, gerakan muspika dan lintas sektor 2 kali seminggu turun ke desa
  6. Kecamatan Tekung, rencana Deklarasi ODF pada bulan Desember 2010, gerakan muspika turun ke desa juga telah dilakukan
Jika target diatas terwujud, maka sepanjang tahun 2010 ini Kabupaten Lumajang akan mempunyai 10 Kecamatan ODF. Selanjutnya tantangan masih menanti  . mempertahankan perilaku Buang Air Besar Masyarakat hanya di jamban, agar tidak kembali menjadi OD lagi .

Minggu, 09 Mei 2010

Konstruksi Jamban Pada Kondisi Khusus

Konstruksi Jamban Pada Daerah Pasang Surut Pantai, Daerah Banjir, serta Rumah Panggung

Tulisan ini sebetulnya memenuhi permintaan Mas Faidul - Kendari , saat chatting di media sillaturrahim facebook kemarin. Saya menggunakan acuan yang dibuat WSP dan UP3D LPPM-ITS. Pada dasarnya perencanaan jamban pada daerah khusus ini tetap mengacu pada teori hydrogeology penyebaran dan pergerakan air akibat resapan alamiah sesuai tinggi rendagnya Muka Air Tanah (MAT). Berbagai Aspek MAT terhadap letak dan konstruksi jamban, akan saya sampaikan dilain kesempatan.

Pada kondisi khusus ini, kontruksi jamban dapat dibuat dengan dua model :
  1. Jamban dengan permukaan ditinggikan. Jamban model ini dapat dilihat sebagaimana gambar dibawah ini. Dengan meninggikan permukaan dasar bangunan jamban sehingga dapat menampung rumah jamban sekaligus penampungan tinja di bawahnya. Jamban Ditinggikan
  2. Jamban untuk daerah banjir/pasang surut, atau rumah panggung. Jamban model ini dirancang untuk digunakan pada daerah yang biasa terkena dampak banjir selama musim hujan. Juga cocok digunakan pada daerah pasang surut serta rumah panggung. Jamban Daerah Banjir dan PantaiJika kita lihat gambar diatas, sumur penampung tinja berada diatas tanah. Sumur ini dihubungkan dengan slab dan closet melalui sejumlah ring beton dan pipa. Jumlah ring beton dan panjang pipa dapat disesuaikan dengan ketinggian air selama banjir atau pasang surut.  Karena sumur akan penuh selama banjir atau pasang, maka bagian satu-satunya yang dapat digunakan dari tangki adalah bagian yang melewati permukaan banjir atau pasang. Rumah jamban perlu ditinggikan melebihi permukaan air yang tertinggi. Jamban model ini akan lebih mahal biaya pembuatannya daripada jamban jenis lain. Juga harus diperhitungkan semakin berkurangnya kekuatan bahan bangunan yang digunakan akibat terendam air. Akan sangat disarankan jika menggunakan bahan dengan spesifikasi tahan air.
Persyaratan Teknis Konstruksi
Persyaratan Teknis Konstruksi model jamban diatas antara lain :
  1. Tangki septic menggunakan pasangan batu bata biasa dengan adukan 1ps:2sm:3kp, sedangkan untuk adukan kedap air/plester menguunakan adukan 1sm:3ps
  2. Tangki septic harus dilengkapi dengan pipa udara dengan diameter 50 mm (2) dan tinggi 25 m dari permukaan tanah.
  3. Tangki septic harus dilengkapi dengan lubang periksa yang berukuran 40 cm x 40 cm.
Persyaratan Teknis Resapan
  1. Konstruksi sumur resapan merupakan sumuran yang berdiameter 80 cm dengan kedalaman 160 cm
  2. Sumur resapan menggunakan pasangan batu bata system sarang lebah pada bagian bawah (daerah yang terendam air), dan konstruksi bata dengan adukan kapur untuk bagian atas (daerah kering).
Pengurasan jamban jenis ini menjadi tidak mudah untuk dilakukan. Dampak dari pengerjaan tukang yang kurang baik, akan dapat menyebabkan runtuh atau ring bergeser, sehingga nasehat ahli pertukangan sangat disarankan selama pengerjaan.

Tulisan ini mungkin masih jauh dari detail yang dibutuhkan rekan sanitarian. Namun setidaknya (harapannya) dapat menjadi sedikit acuan (semoga .

Jumat, 30 April 2010

Sick Building Syndrome

Dampak Kesehatan Pemakaian Air Conditioner (AC) dan Sick Building Syndrome

Pendingin udara atau Air conditioner (AC), saat ini merupakan kebutuhan pokok bagi sebuah lingkungan kerja. Dengan peningkatan suhu bumi yang semakin tidak kompromi, AC menjadi alternatif utama untuk kenyamanan. Dengan AC, maka temperatur, kelembaban, dan distribusi udara dapat diatur sesuai syarat dan keinginan. Berbagai kenyamanan penggunaan AC, seringkali membuat pengelola gedung melupakan perawatan yang benar terhadap AC dan menganggap bahwa udara dalam ruangan dengan AC selalu bersih dan sehat. Perawatan AC yang kurang benar berpeluang menyebarkan berbagai virus dan bakteri. Masalah Kesehatan yang muncul kemudian adalah terjadinya Sick Building Syndrome. Faktor yang ikut mempengaruhi penyakit ini antara lain sirkulasi ventilasi yang buruk, selain akibat pencemaran polusi udara asap kendaraan bermotor dan industri, kuman, virus, jamur, dan parasit. 

Rumah sakit sebagai sebuah lingkungan kerja merupakan institusi pelayanan Kesehatan yang di dalamnya terdapat bangunan, peralatan, manusia, dan aktivitas pelayanan Kesehatan. Disamping memberikan dampak positif sebagai tempat untuk menyembuhkan penyakit, ternyata rumah sakit juga memberikan dampak negatif bagi manusia seperti pencemaran, sumber penularan penyakit, termasuk gangguan Kesehatan bagi tenaga medis maupun non medis. Salah satu gangguan Kesehatan yang dapat terjadi pada tenaga medis dan non medis di rumah sakit adalah SBS (Sick Building Syndrome). SBS berhubungan dengan buruknya kualitas udara dalam ruangan kerja.

Sebuah penelitian menyebutkan bahwa di United States pada Tahun 1994 (Bureau of Labor Statistic di Amerika Serikat), 5 juta warganya yang bekerja di rumah sakit, 40% di antaranya adalah dokter, perawat, apoteker serta para asistennya menderita Sick Building Syndrome ini (Wichaksana (2002). Penting dicatat, mereka merupakan sebuah kelompok tenaga kerja yang mempunyai risiko besar terpajan bahan-bahan berbahaya di rumah sakit. Pada lingkungan Rumah sakit juga sangat dimungkinkan menjadi tempat berkembang biaknya sumber penyakit dan berkumpulnya bahan- bahan berbahaya biologi, kimia, dan fisik yang setiap saat dapat kontak dengan tenaga kerja, pasien, keluarga pasien, dan pengunjung.

acKita masih mencatat bahwa AC bisa menyebabkan penderitaan bagi banyak orang. Terdapat 182 orang - peristiwa ini terjadi di Philadelpia, USA tahun 1976) - mengalami pegal- pegal, flu, kepala pusing, kejang otot, perut kembung, cepat lelah, dan 29 orang diantaranya kemudian meninggal dunia ( data Bureau of Labor Statistic, AS). Berdasarkan hasil penelitian, kasus ini disebabkan oleh bakteri Legionella pneumophila. Bakteri itu hidup di alam bebas, terutama di daerah dengan kelembaban tinggi seperti sungai, danau, selokan, termasuk juga AC terutama di bagian cooling tower.
Penelitian yang dilakukan di PT. Infomedia Nusantara yang menggunakan AC lokal terhadap 89 responden ditemukan bahwa sebagian besar karyawan mengalami gangguan Kesehatan berupa bersin sebesar 57,3 %, sakit kepala sebesar 66,29 %, mata merah sebesar 5 1,69 %, mata pedih sebesar 58,43 %, mata gatal sebesar 74,16 %, dan kulit kering sebesar 17,9 1 % (Corie, 2004).

Berdasarkan bebeapa kenyataan diatas sangat penting untuk dilakukan pengendalian pencemaran udara di lingkungan rumah sakit, sehingga dapat meminimalisasi terjadinya gangguan Kesehatan bagi seluruh pengguna rumah sakit (tenaga medis, non medis, pasien, maupun pengunjung).

Namun bagaimanakah sebetulnya pengaruh kualitas fisik dan mikrobiologi udara pada ruangan ber-AC terhadap munculnya Sick Building Syndrome (SBS), pada tempat kerja, akan selalu terkait dengan beberapa data berikut :
a. Pengaruh kualitas fisik dan kualitas mikrobiologi udara dalam ruang.
b. Apakah ada perbedaan keluhan Sick Building Syndrome (SBS) pada berbagai jenis tenaga kerja.

Sick Building Syndrome (SBS)

Istilah sindrom gedung sakit (Sick Building Syndrome) pertama diperkenalkan oleh para ahli dari negara Skandinavia di awal tahun 1980-an yang lalu. Istilah ini kemudian digunakan secara luas dan kini telah tercatat berbagai laporan tentang sindrom ini dari berbagai Negara Eropa, Amerika, bahkan dari Negara tetangga kita Singapura (Aditama, 2002).


Sick Building Syndrome atau sindrom gedung sakit adalah kumpulan gejala akibat adanya gedung yang sakit, artinya terdapat gangguan pada sirkulasi udara dalam gedung itu. Adanya gangguan itulah yang menyebabkan gedung tersebut dikatakan sakit sehingga timbul sindrom ini yang memang terjadi karena penderitanya menggunakan suatu gedung yang sedang sakit (Aditama, 2002).

Menurut Burge (2004), Sick Building Syndrome (SBS) terdiri dari sekumpulan gej ala iritasi mukosa, kulit, dan gej ala lainnya terkait dengan gedung sebagai tempat kerja, penyebabnya adalah gedung yang tidak terawat dengan baik.

Sedangkan menurut Prof. Dr. Juli Soemirat Slamet, M.PH., Ph.D, Sick Building Syndrome adalah gej ala- gej ala gangguan Kesehatan, umumnya berkaitan dengan saluran pernafasan. Sekumpulan gej ala ini dialami oleh orang yang hidup atau bekerja di gedung atau rumah yang ventilasinya tidak direncanakan dengan baik (Sujayanto, 2001).

Gejala atau Keluhan SBS
Gejala-gejala yang timbul memang berhubungan dengan tidak sehatnya udara di dalam gedung. Keluhan yang ditemui pada sindrom ini antara lain dapat berupa batuk kering, sakit kepala, iritasi mata, hidung dan tenggorokan, kulit yang kering dan gatal, badan lemah dan lain- lain. Keluhan- keluhan tersebut biasanya menetap setidaknya dua minggu. Keluhan- keluhan yang ada biasanya tidak terlalu hebat, tetapi cukup terasa mengganggu dan yang penting amat berpengaruh terhadap produktivitas kerja seseorang. Sindrom gedung sakit ini baru dapat dipertimbangkan bila lebih dari 20% atau bahkan 50% pengguna suatu gedung mempunyai keluhan- keluhan seperti di atas. Kalau hanya dua atau tiga orang maka mereka mungkin sedang kena flu biasa (Aditama, 2002).
Keluhan SBS dapat dikelompokkan sebagai berikut:
1. Iritasi selaput lendir: iritasi mata, mata pedih, merah, dan berair.
2. Iritasi hidung: iritasi tenggorokan, sakit menelan, gatal, batuk kering.
3. Gangguan neurotoksik: sakit kepala, lemah atau capek, mudah tersinggung, sulit berkonsentrasi.
4. Gangguan paru dan pernafasan: batuk, nafas berbunyi, sesak nafas, rasa berat di dada.
5. Gangguan kulit: kulit kering dan gatal.
6. Gangguan saluran cerna: diare.
7. Lain- lain: gangguan perilaku, gangguan saluran kencing, sulit belajar (Aditama, 2002).

Penyebab Terjadinya SBS
Sampai saat ini masih sulit untuk menentukan suatu penyebab tunggal dari sindrom gedung sakit, namun sebagian besar keluhan yang timbul dari tejadinya SBS diakibatkan oleh pencemaran udara yang terjadi dalam ruangan. Menurut hasil penelitian dari Badan Kesehatan dan Keselamatan Kerja Amerika Serikat atau National Institute for Occupational Safety and Health (NIOSH) 466 gedung di Amerika Serikat menemukan bahwa ada enam sumber utama pencemaran udara di dalam gedung, yaitu:
  1. 52% pencemaran akibat ventilasi yang tidak adekuat dapat berupa kurangnya udara segar yang masuk ke dalam ruangan gedung, distribusi udara yang tidak merata, dan buruknya perawatan sarana ventilasi.
  2. Pencemaran udara dari alat- alat di dalam gedung seperti mesin fotokopi, kertas tisu, lem kertas dan lem wallpaper, zat pewarna dari bahan cetakan, pembersih lantai serta pengharum ruangan (sebesar 17%).
  3. Pencemaran dari luar gedung dapat juga masuk ke dalam ruangan, hal ini dikarenakan tidak tepatnya penempatan lokasi masuknya udara segar dalam ruangan (sebesar 11%).
  4. Pencemaran bahan bangunan meliputi pencemaran formaldehid, lem, asbes, fibreglass dan bahan lain yang merupakan komponen pembentuk gedung tersebut (sebesar 3%).
  5. Pencemaran akibat mikroba dapat berupa bakteri, jamur, protozoa, dan produk mikroba lainnya yang dapat ditemukan di saluran udara dan alat pendingin serta seluruh sistemnya (sebesar 5%).
  6. Sebesar 12 % dari sumber tidak diketahui (Aditama, 2002).
Burge (2004) menyatakan bahwa faktor yang mempengaruhi peningkatan prevalensi SBS antara lain:
1. Faktor individu:
  • a. Debu kertas.
  • b. Asap rokok
  • c. Debu dalam ruangan
  • d. Penggunaan komputer

2. Faktor gedung:
  • a. Suhu ruangan yang tinggi (lebih dari 23C dalam ruangan ber-AC).
  • b. Aliran udara dalam ruangan rendah (kurang dari 10 liter/ detik/ orang).
  • c. AC dalam ruangan.
  • d. Kontrol yang rendah terhadap suhu dan pencahayaan.
  • e. Rendahnya perawatan dan kebersihan gedung.
  • f. Kerusakan pada jaringan air.
Usaha untuk mengerti penyebab SBS telah dilakukan dengan melakukan penyelidikan terhadap banyak parameter yang cenderung difokuskan pada kinerja ventilasi, kontaminan dan berbagai variasi parameter lainnya. Tipikal parameter yang telah diselidiki dapat dilihat pada tabel berikut:
Parameter yang Diselidiki pada SBS
Parameter Keterangan
Sistem ventilasi 1. Kecepatan ventilasi (terlalu cepat, terlalu lambat).
2. Buruknya distribusi udara.
3. Sistem ventilasi yang tidak beroperasi.
4. Pengatur suhu udara (air conditioner).
5. Buruknya penyaringan.
6. Buruknya perawatan.
Kontaminan gedung 1. Asbestos
2. Karbondioksida
3. Karbon monoksida
4. Debu
5. Formaldehid, radon, ozon.
6. Spora, polen.
7. Bakteri.
8. Kelembaban (terlalu tinggi, terlalu rendah).
9. Ion
10. Bau, asap
Polutan dari luar, dan senyawa organik (volatil).
Penghuni Usia, gender, status Kesehatan, pekerjaan.
Lain- lain 1. Bentuk gedung.
2. Radiasi elektromagnetik
3. Tidak ada kontrol lingkungan.
4. Pencahayaan
5. Kebisingan
6. Faktor psikologi
7. Stres
8. Terminal display.
Sumber: Liddament, 1990 dalam Pudjiastuti et al., 1998